Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes
نویسندگان
چکیده
Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability.
منابع مشابه
Use of classification tree methods to study the habitat requirements of tench (Tinca tinca) (L., 1758)
Classification trees (J48) were induced to predict the habitat requirements of tench (Tinca tinca). 306 datasets were used for the given fish during 8 years in the river basins in Flanders (Belgium). The input variables consisted of the structural-habitat (width, depth, gradient slope and distance from the source) and physic chemical (pH, dissolved oxygen, water temperature and electric conduct...
متن کاملAssessing Habitat Use by Snapper (Chrysophrys auratus) from Baited Underwater Video Data in a Coastal Marine Park
Baited Underwater Video (BUV) systems have become increasingly popular for assessing marine biodiversity. These systems provide video footage from which biologists can identify the individual fish species present. Here we explore the relevance of spatial dependence and marine park boundaries while estimating the distribution and habitat associations of the commercially and recreationally import...
متن کاملReef Fishes in Biodiversity Hotspots Are at Greatest Risk from Loss of Coral Species
Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe ...
متن کاملThe Impact of Ocean Noise Pollution on Marine Biodiversity
Most marine animals, particularly marine mammals and fish, are very sensitive to sound. Noise can travel long distances underwater, blanketing large areas, and potentially preventing marine animals from hearing their prey or predators, finding their way, or connecting with mates, group members, or their young. Decreased species diversity in whales and dolphins was related to an increase in seis...
متن کاملRotenone: An Essential but Demonized Tool for Assessing Marine Fish Diversity
Coral reefs, one of the most biologically diverse and important ecosystems on Earth, are experiencing unprecedented and increasing ecological decline, yet the fish faunas of such reefs and other tropical shoreline habitats remain poorly known in many areas. Rotenone, a natural substance traditionally used by subsistence fishers, is a uniquely efficient tool for sampling reef and other shore fis...
متن کامل